JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Plasma PPi Deficiency Is the Major, but Not the Exclusive, Cause of Ectopic Mineralization in an Abcc6 -/- Mouse Model of PXE.

Pseudoxanthoma elasticum (PXE), a prototype of heritable ectopic mineralization disorders, is caused in most cases by inactivating mutations in the ABCC6 gene. It was recently discovered that absence of ABCC6-mediated adenosine triphosphate release from the liver and consequently reduced plasma inorganic pyrophosphate (PPi) levels underlie PXE. This study examined whether reduced levels of circulating PPi, an antimineralization factor, is the sole mechanism of PXE. The Abcc6-/- and Enpp1asj mice were crossed with transgenic mice expressing human ENPP1, an ectonucleotidase that generates PPi from adenosine triphosphate. We generated Abcc6-/- and Enpp1asj mice, either wild-type or hemizygous for human ENPP1. Plasma levels of PPi and the degree of ectopic mineralization were determined. Overexpression of human ENPP1 in Enpp1asj mice normalized plasma PPi levels to that of wild-type mice and, consequently, completely prevented ectopic mineralization. These changes were accompanied by restoration of their bone microarchitecture. In contrast, although significantly reduced mineralization was noted in Abcc6-/- mice expressing human ENPP1, small mineralization foci were still evident despite increased plasma PPi levels. These results suggest that PPi is the major mediator of ectopic mineralization in PXE, but there might be an alternative, as yet unknown mechanism, independent of PPi, by which ABCC6 prevents ectopic mineralization under physiologic conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app