Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Competitive ligands facilitate dissociation of the complex of bifunctional inhibitor and protein kinase.

Biophysical Chemistry 2017 September
Dissociation of the complex of a ligand and a protein usually follows the kinetic profile of the first order process and the rate of dissociation is not affected by the presence of competitive ligands. We discovered that dissociation of the complex between a bifunctional ligand and a protein kinase (the catalytic subunit of cAMP-dependent protein kinase), an enzyme possessing 2 different substrate binding sites, was accelerated (facilitated) over 50-fold in the presence of competitive ligands at higher concentrations. Structurally diverse compounds revealed >10-fold different efficiency for acceleration of dissociation of the complex. These results show that the kinetic behavior of flexible biomolecular complexes possessing two spatially separated contact areas is highly dynamic. This property of biomolecular complexes should be carefully considered for effective application of bifunctional ligands for regulation of activity of target proteins in cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app