JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Urine Interleukin-18 (IL-18) as a Biomarker of Total-Body Irradiation: A Preliminary Study in Nonhuman Primates.

Radiation Research 2017 September
We have reported that circulating IL-18 can be used as a radiation biomarker in mice, minipigs and nonhuman primates (NHPs, Macaca mulatta). Here, we report the levels of IL-18 in individual NHP's urine before and at 6 h-7 days after 5.0, 6.5 and 8.5 Gy60 Co total-body irradiation (TBI) using enzyme linked immunosorbent assay (ELISA). Six animals (3.5-5.5 kg, 3-4 years old) per radiation dose were investigated. Correlation values between urine IL-18 and blood cell counts and serum chemistry parameters including lactate dehydrogenase (LDH), lipase, and serum total protein (TP), as well as between urine IL-18 and 60-day survival, were analyzed. Our data, to the best of our knowledge, for the first time, demonstrate that concentrations of urine IL-18 from irradiated NHPs were increased in a radiation dose-dependent manner compared to pre-TBI levels in samples from these animal (N = 18, 11.02 ± 1.3 pg/ml). A 5.0 Gy low dose of radiation (∼LD10/60 ) did not increase urine IL-18 levels. In contrast, high-dose TBI significantly increased urine IL-18 at day 1 to day 5 in a bell-shaped time course, reaching a peak of 5- to 10-fold of control levels on day 3 after 6.5 Gy (∼LD50/60 ) and 8.5 Gy (∼LD90/60 ), respectively. Statistical analysis using receiver operator characteristic (ROC) and MultiROC analysis indicated that white blood cell and platelet counts, serum LDH, lipase and TP, when combined with urine IL-18, provide discriminatory predictors of total-body radiation injury with a very high ROC area of 0.98. Urine IL-18 measurement, as an early prognostic indicator of survival, may facilitate rapid detection of lethal doses of radiation, based on the currently available data set.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app