Add like
Add dislike
Add to saved papers

Optimized DNA Vaccine Enhanced by Adjuvant IL28B Induces Protective Immune Responses Against Herpes Simplex Virus Type 2 in Mice.

Viral Immunology 2017 October
Antigen-specific immune responses determine the efficacy of herpes simplex virus type 2 (HSV-2) vaccines. To optimize the immunogenicity of the antigen gD2, we developed the gD2ΔUL25 DNA vaccine encoding HSV-2 glycoprotein D and UL25 gene encoding viral capsid vertex proteins in this study. The gD2 and gD2ΔUL25 DNA vaccines were compared with formalin-inactivated HSV-2 (FI-HSV-2), and results showed a greater protective immune response induced by gD2ΔUL25 than by gD2. Therefore, gD2ΔUL25 was chosen to evaluate further using the IL28B adjuvant. Immunization with gD2ΔUL25/IL28B elicited stronger humoral and T cell immune responses than with gD2ΔUL25 alone. Compared with controls, gD2ΔUL25/IL28B decreased HSV-2 viral loads and induced protective effects against genital tract lesions generated by HSV-2. These findings demonstrated that the prophylactic DNA vaccine gD2ΔUL25 with IL28B adjuvant could enhance the humoral and T cell immune responses, and improve the protective immune response against HSV-2 in female mice compared with FI-HSV-2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app