Add like
Add dislike
Add to saved papers

Low-Cost Perovskite Solar Cells Employing Dimethoxydiphenylamine-Substituted Bistricyclic Aromatic Enes as Hole Transport Materials.

ChemSusChem 2017 October 10
The synthesis, characterization and photovoltaic performance of series of novel molecular hole transport materials (HTMs) based on bistricyclic aromatic enes (BAEs) are presented. The new derivatives were obtained following a simple and straightforward procedure from inexpensive starting reagents mimicking the synthetically challenging 9,9'-spirobifluorene moiety of the well-studied spiro-OMeTAD. The novel HTMs were tested in mixed cations and anions perovskite solar cells (PSCs) yielding a power conversion efficiency (PCE) of 19.2 % under standard global 100 mW cm(-2) AM1.5G illumination using 9-{2,7-bis[bis(4-methoxyphenyl)amino]-9H-fluoren-9-ylidene}-N(2) ,N(2) ,N(7) ,N(7) -tetrakis(4-methoxyphenyl)-9H-thioxanthene-2,7-diamine (coded as KR374). The power conversion efficiency data confirms the easily attainable heteromerous fluorenylidenethioxanthene structure as valuable core for low-cost and highly efficient HTM design and paves the way towards cost-effective PSC technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app