Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris.

The constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP ), which is one of the benchmark promoters of Pichia pastoris, was analyzed in terms of putative transcription factor binding sites. We constructed a synthetic library with distinct regulatory properties through deletion and duplication of these putative transcription factor binding sites and selected transcription factor (TF) genes were overexpressed or deleted to understand their roles on heterologous protein production. Using enhanced green fluorescent protein, an expression strength in a range between 0.35- and 3.10-fold of the wild-type PGAP was obtained. Another model protein, recombinant human growth hormone was produced under control of selected promoter variants and 1.6- to 2.4-fold higher product titers were reached compared to wild-type PGAP . In addition, a GAL4-like TF was found to be a crucial factor for the regulation of PGAP , and its overexpression enhanced the heterologous protein production considerably (up to 2.2-fold compared to the parental strain). The synthetic PGAP library generated enabled us to investigate the different putative transcription factors which are responsible for the regulation of PGAP under different growth conditions, ergo recombinant protein production under PGAP . Biotechnol. Bioeng. 2017;114: 2319-2327. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app