Add like
Add dislike
Add to saved papers

Chiroptical inversion for isolated vibronic transitions of supersonic beam-cooled molecules.

Circular dichroism-resonance-enhanced multiphoton ionization (CD-REMPI) was used for CD measurements on several single vibronic transitions of supersonic beam-cooled (R)-(+)-1-phenylethanol. Due to the low molecular densities within a supersonic beam and the expected small anisotropy factor of 1-phenylethanol in the permille region, the precision of the experimental method had to be significantly improved. Therefore, a single laser pulse evaluation combined with a twin-peak technique enabled within the used supersonic beam setup is presented. For the electronic transition S0 → S1 of (R)-(+)-1-phenylethanol (π → π* transition of the phenyl ring at 266 nm) ten different vibrational modes as well as the 0-transition were investigated with one-color (1 + 1) CD-REMPI. The results deliver new experimental insights on the influence of molecular vibrations on the anisotropy factor. TD-DFT theoretical predictions show how the angle between the electronic and magnetic transition dipole moments of the electronic transition can be modified by different vibrational modes, making even a flip of the sign of the anisotropy factor possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app