Add like
Add dislike
Add to saved papers

Cross-platform compatibility of de novo-aligned SNPs in a nonmodel butterfly genus.

High-throughput sequencing methods for genotyping genome-wide markers are being rapidly adopted for phylogenetics of nonmodel organisms in conservation and biodiversity studies. However, the reproducibility of SNP genotyping and degree of marker overlap or compatibility between datasets from different methodologies have not been tested in nonmodel systems. Using double-digest restriction site-associated DNA sequencing, we sequenced a common set of 22 specimens from the butterfly genus Speyeria on two different Illumina platforms, using two variations of library preparation. We then used a de novo approach to bioinformatic locus assembly and SNP discovery for subsequent phylogenetic analyses. We found a high rate of locus recovery despite differences in library preparation and sequencing platforms, as well as overall high levels of data compatibility after data processing and filtering. These results provide the first application of NGS methods for phylogenetic reconstruction in Speyeria and support the use and long-term viability of SNP genotyping applications in nonmodel systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app