Add like
Add dislike
Add to saved papers

Enzymatic conjugation using branched linkers for constructing homogeneous antibody-drug conjugates with high potency.

Antibody-drug conjugates (ADCs) are emerging therapeutic agents in the treatment of cancer, and various conjugation strategies and chemical linkers have been developed to efficiently construct ADCs. Despite previous extensive efforts for improving conjugation efficiency and ADC homogeneity, most ADC linkers developed to date load only single payloads. Branched linkers that can load multiple payload molecules have yet to be fully explored. It is logical to envisage that a multi-loading strategy allows for increase in drug-to-antibody ratio (DAR) with less chemical or enzymatic modification to the antibody structure compared to traditional linear linkers, leading to efficient ADC construction, minimal destabilization of the antibody structure, and enhanced ADC efficacy. Herein, we report that the branched linkers we designed can be quantitatively installed on an anti-HER2 monoclonal antibody by microbial transglutaminase (MTGase)-mediated conjugation without impairing its antigen binding affinity, enabling modular installation of payload molecules and construction of homogeneous ADCs with increased DARs (up to 8). An anti-HER2 antibody-monomethyl auristatin F conjugate constructed using our branched linkers showed greater in vitro cytotoxicity against HER2-expressing breast cancer cell lines than that consisting of linear linkers, demonstrating the effectiveness of the branched linker-based payload delivery. Our finding demonstrates that enzymatic ADC construction using branched linkers is a promising strategy, which may lead to innovative cancer therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app