Add like
Add dislike
Add to saved papers

Numerical simulation of a glucose sensitive composite membrane closed-loop insulin delivery system.

Closed-loop insulin delivery system works on pH modulation by gluconic acid production from glucose, which in turn allows regulation of insulin release across membrane. Typically, the concentration variation of gluconic acid can be numerically modeled by a set of non-linear, non-steady state reaction diffusion equations. Here, we report a simpler numerical approach to time and position dependent diffusivity of species using finite difference and differential quadrature (DQ) method. The results are comparable to that obtained by analytical method. The membrane thickness directly determines the concentrations of the glucose and oxygen in the system, and inversely to the gluconic acid. The advantage with the DQ method is that its parameter values need not be altered throughout the analysis to obtain the concentration profiles of the glucose, oxygen and gluconic acid. Our work would be useful for modeling diabetes and other systems governed by such non-linear and non-steady state reaction diffusion equations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app