COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of Bayesian regression models and partial least squares regression for the development of infrared prediction equations.

The objective of this study was to compare the prediction accuracy of 92 infrared prediction equations obtained by different statistical approaches. The predicted traits included fatty acid composition (n = 1,040); detailed protein composition (n = 1,137); lactoferrin (n = 558); pH and coagulation properties (n = 1,296); curd yield and composition obtained by a micro-cheese making procedure (n = 1,177); and Ca, P, Mg, and K contents (n = 689). The statistical methods used to develop the prediction equations were partial least squares regression (PLSR), Bayesian ridge regression, Bayes A, Bayes B, Bayes C, and Bayesian least absolute shrinkage and selection operator. Model performances were assessed, for each trait and model, in training and validation sets over 10 replicates. In validation sets, Bayesian regression models performed significantly better than PLSR for the prediction of 33 out of 92 traits, especially fatty acids, whereas they yielded a significantly lower prediction accuracy than PLSR in the prediction of 8 traits: the percentage of C18:1n-7 trans-9 in fat; the content of unglycosylated κ-casein and its percentage in protein; the content of α-lactalbumin; the percentage of αS2 -casein in protein; and the contents of Ca, P, and Mg. Even though Bayesian methods produced a significant enhancement of model accuracy in many traits compared with PLSR, most variations in the coefficient of determination in validation sets were smaller than 1 percentage point. Over traits, the highest predictive ability was obtained by Bayes C even though most of the significant differences in accuracy between Bayesian regression models were negligible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app