Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Development and in vivo evaluation of functionalized ritonavir proliposomes for lymphatic targeting.

Life Sciences 2017 August 16
AIMS: The aim of the present work was to prepare, characterize, and evaluate proliposomes containing lipophilic prodrug ritonavir for targeting towards CD4+ T cells in the lymphatic system.

MATERIALS AND METHODS: The liposomes were prepared by lipid thin film hydration method and lyophilized in the presence of cryoprotectant mannitol to obtain proliposomes. The optimized proliposomes by Central Composite Design, were surface modified with biotin. The proliposomes were evaluated for particle size, zeta potential, polydispersity index (PDI), entrapment efficiency, in vitro drug release, in vivo pharmacokinetics and biodistribution studies.

KEY FINDINGS: The mean particle size was found to be in the range of 126.6 to 306.2nm with PDI of 0.340-1.00. The entrapment efficiency was found to be in the range of 18.9 to 86.2%. The formulations showed a zeta potential in the range of -18.1 to -20.2mv. Biotinylated proliposomes (LIP-5B) were in the size of 149.8±6.8nm with entrapment efficiency 61.6%. The % CDR of pure drug, conventional, biotinylated proliposome in 3h was found to be 58.3, 82.04, and 95.9% respectively. In vitro drug release and in vivo pharmacokinetics of the pure drug, optimized conventional proliposomes (LIP-5) and biotin proliposomes (LIP-5B) were executed.

SIGNIFICANCE: The AUC for the liposomes were found to be much higher in the spleen and thymus compared to that in the plasma which indicated that the developed formulations enhance the bioavailability and target specificity compared to that of the pure drug thereby enhancing bioavailability at target site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app