JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Synthesis of some transition metal (M: 25 Mn, 27 Co, 28 Ni, 29 Cu, 30 Zn, 47 Ag, 48 Cd) sulfide nanostructures by hydrothermal method.

The design of nanostructures with favored shape, particle size and structure is one of the most important fields of nanoscience. To reach this target hydrothermal method is one of the most applicable methods which allow us to obtain favored structures by changing some parameters. This review focuses on synthesis of some transition metal sulfides by hydrothermal method because of technological importance of this group of material. The common sulfides of Mn, Co, Ni, Cu, Zn, Ag and Cd are introduced and a mechanism proposed for their synthesis. The effects of temperature and time reaction, surfactant, reactants concentration, metal and sulfur sources and etc. on the morphology, particle size and some properties of the products are investigated. SEM and TEM images show the morphology and size of the as-synthesized samples. Chemical composition of the samples is characterized by XRD, EDS and etc. The magnetic, optical and thermoelectric properties of the metal sulfides are investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app