Add like
Add dislike
Add to saved papers

Surgical flow disruptions during robotic-assisted radical prostatectomy.

INTRODUCTION: We sought to apply the principles of human factors research to robotic-assisted radical prostatectomy to understand where training and integration challenges lead to suboptimal and inefficient care.

MATERIALS AND METHODS: Thirty-four robotic-assisted radical prostatectomy and bilateral pelvic lymph node dissections over a 20 week period were observed for flow disruptions (FD) - deviations from optimal care that can compromise safety or efficiency. Other variables - physician experience, trainee involvement, robot model (S versus Si), age, body mass index (BMI), and American Society of Anesthesiologists (ASA) physical status - were used to stratify the data and understand the effect of context. Effects were studied across four operative phases - entry to insufflations, robot docking, surgical intervention, and undocking. FDs were classified into one of nine categories.

RESULTS: An average of 9.2 (SD = 3.7) FD/hr were recorded, with the highest rates during robot docking (14.7 [SD = 4.3] FDs/hr). The three most common flow disruptions were disruptions of communication, coordination, and equipment. Physicians with more robotic experience were faster during docking (p < 0.003). Training cases had a greater FD rate (8.5 versus 10.6, p < 0.001), as did the Si model robot (8.2 versus 9.8, p = 0.002). Patient BMI and ASA classification yielded no difference in operative duration, but had phase-specific differences in FD.

CONCLUSIONS: Our data reflects the demands placed on the OR team by the patient, equipment, environment and context of a robotic surgical intervention, and suggests opportunities to enhance safety, quality, efficiency, and learning in robotic surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app