Add like
Add dislike
Add to saved papers

Functional analysis of p.Ala253_Leu254insAsn mutation in PLS3 responsible for X-linked osteoporosis.

Clinical Genetics 2018 January
Mutations in Plastin-3 (PLS3) have been identified as a cause of X-linked osteoporosis. To reveal the molecular mechanism of PLS3 on osteoporosis, we characterized the p.Ala253_Leu254insAsn mutation in PLS3. We first identified Lymphocyte cytosolic protein 1 (LCP1) as a binding partner of PLS3 and the mutation disrupted the interaction between them. We then confirmed the roles of PLS3 and LCP1 in the regulation of intracellular Ca2+ , which was weakened by the mutant PLS3. Moreover, the interaction between PLS3 and LCP1 was enhanced under a low concentration of extracellular Ca2+ . However, the mutation in PLS3 weakened the responsiveness. The reduced regulation on Ca2+ caused by p.Ala253_Leu254insAsn may be the possible molecular mechanism of osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app