Add like
Add dislike
Add to saved papers

The effect of antimicrobial photodynamic therapy on the expression of novel methicillin resistance markers determined using cDNA-AFLP approach in Staphylococcus aureus.

BACKGROUND: Widespread methicillin resistant Staphylococcus aureus (MRSA) and absence of effective antimicrobial agents has led to limited therapeutic options for treating MRSA infection. We aimed to evaluate the effect of antimicrobial photodynamic therapy (aPDT) on the expression of novel identified methicillin resistance markers (NIMRMs) in S. aureus using complementary DNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) approaches to address the therapeutic alternatives for MRSA infections.

MATERIALS AND METHODS: We used cDNA-AFLP to compare MRSA and methicillin susceptible S. aureus (MSSA) for identification of target genes implicated in methicillin resistance. To determine the sub-lethal aPDT (sPDT), MRSA and MSSA clinical isolates photosensitized with toluidine blue O (TBO), and then were irradiated with diode laser. After sPDT, the colony forming units/mL was quantified. Antimicrobial susceptibility against methicillin was assessed for cell-surviving aPDT. Effects of sPDT on the expression of NIMRMs were evaluated by real-time quantitative reverse transcription PCR.

RESULTS: According to our results, serine hydrolase family protein (Shfp) encoding gene and a gene encoding a conserved hypothetical protein (Chp) were implicated in methicillin resistance in MRSA. sPDT reduced the minimum inhibitory concentrations of methicillin by 3-fold in MRSA. sPDT could lead to about 10- and 6.2- fold suppression of expression of the Chp and Shfp encoding genes, respectively.

CONCLUSION: sPDT would lead to reduction in resistance to methicillin of MRSA in surviving cells by suppressing the expression of the Shfp and Chp encoding genes associated with methicillin resistance. This may have potential implications of aPDT for the treatment of MRSA infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app