Add like
Add dislike
Add to saved papers

Monocrotophos, an organophosphorus insecticide, disrupts the expression of HpNetrin and its receptor neogenin during early development in the sea urchin (Hemicentrotus pulcherrimus).

Neurotoxicology 2017 September
Netrins, chemotropic guidance cues, can guide the extension of serotonergic axons by binding to netrin receptors during neural development. However, little is known about whether disruption of netrin signaling is involved in the mechanisms by which organophosphorus pesticides affect serotonergic nervous system (SNS) development. In this study, we evaluated the effects of the pesticide monocrotophos (MCP) on the expression patterns of HpNetrin and its receptor neogenin as well as on the intracellular calcium ion (Ca2+ ) levels in Hemicentrotus pulcherrimus (sea urchin) by exposing fertilized embryos to 0, 0.01, 0.10, and 1.00mg/L MCP. The results showed that MCP disrupted HpNetrin and neogenin expression at different developmental stages in H. pulcherrimus and that Ca2+ appeared to be involved in the MCP-induced developmental neurotoxicity. Specifically, the lower concentrations of MCP elevated HpNetrin and neogenin transcription, resulting in higher intracellular Ca2+ levels during the early developmental stages in the sea urchin; this may affect netrin-directed cell migration/axon extension and subsequently disrupt serotonergic axon branching and synapse formation. In contrast, 1.00mg/L MCP exhibited an inhibitory effect on HpNetrin and neogenin transcription. This finding implies that the regulatory roles of these factors may be diminished during early development, thereby causing developmental defects in the sea urchin. Collectively, our results provide a basis for exploring the involvement of netrin and neogenin in the organophosphate-induced disruption of the SNS during development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app