Add like
Add dislike
Add to saved papers

In vitro and in vivo behavior of DNA tetrahedrons as tumor-targeting nanocarriers for doxorubicin delivery.

Deoxyribonucleic acid (DNA) is a versatile material with high applicability and inherent biocompatibility. L-DNA, the perfect mirror form of the naturally occurring D-DNA, has been used in DNA nanotechnology. It has thermodynamically identical properties to D-DNA, is capable of self-assembly and bio-orthogonal base-pairing, and is resistant to nuclease activity. We previously constructed an L-DNA tetrahedron (L-Td) and found that this nanostructure has remarkably higher capacity for cell penetration than its natural counterpart (D-Td). L-Td molecules of two different sizes-one with 17-mer per side (L-Td17 ) and the other with 30-mer per side (L-Td30 )-were prepared by assembling four L-DNA strands. In this study, cellular uptake of L-Td with different sizes was observed over time using a laser scanning confocal microscope (LSCM) equipped with a live cell chamber system. In addition, we conducted a pharmacokinetic study to examine the potential of L-Td as a carrier for in vivo tumor-targeted delivery of a low dose of doxorubicin (DOX). L-Td entered into the cells through endocytosis, and a specific DNA sequence of the L-Td ensures targeted entry into cancer cells. Compared with free DOX, DOX-loaded L-Td (DOX@L-Td) showed decreased clearance and increased initial concentration (C0 ), half-life, and area under the curve (AUC), indicating that DOX@L-Td circulated in the blood stream for longer than free DOX. L-Td17 , in particular, had beneficial effects owing to its ability to enhance tumor accumulation of DOX and reduce the cardiotoxicity caused by it through administration of a low dose of the drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app