Add like
Add dislike
Add to saved papers

Thiophene/thiazole-benzene replacement on guanidine derivatives targeting α2-Adrenoceptors.

Searching for improved antagonists of α2-adrenoceptors, a thorough theoretical study comparing the aromaticity of phenyl-, pyridinyl-, thiophenyl- and thiazolylguanidinium derivatives has been carried out [at M06-2X/6-311++G(p,d) computational level] confirming that thiophene and thiazole will be good 'ring equivalents' to benzene in these guanidinium systems. Based on these results, a small but chemically diverse library of guanidine derivatives (15 thiophenes and 2 thiazoles) were synthesised to explore the effect that the bioisosteric change has on affinity and activity at α2-adrenoceptors in comparison with our previously studied phenyl derivatives. All compounds were tested for their α2-adrenoceptor affinity and unsubstituted guanidinothiophenes displayed the strongest affinities in the same range as the phenyl analogues. In the case of cycloakyl systems, thiophenes with 6-membered rings showed the largest affinities, while for the thiazoles the 5-membered analogue presented the strongest affinity. From all the compounds tested for noradrenergic activity, only one compound exhibited agonistic activity, while two compounds showed very promising antagonism of α2-adrenoceptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app