Add like
Add dislike
Add to saved papers

Position and orientation inference via on-board triangulation.

This work proposes a new approach to determine the spatial location and orientation of an object using measurements performed on the object itself. The on-board triangulation algorithm we outline could be implemented in lieu of, or in addition to, well-known alternatives such as Global Positioning System (GPS) or standard triangulation, since both of these correspond to significantly different geometric pictures and necessitate different hardware and algorithms. We motivate the theory by describing situations in which on-board triangulation would be useful and even preferable to standard methods. The on-board triangulation algorithm we outline involves utilizing dumb beacons which broadcast omnidirectional single frequency radio waves, and smart antenna arrays on the object itself to infer the direction of the beacon signals, which may be used for onboard calculation of the position and orientation of the object. Numerical examples demonstrate the utility of the method and its noise tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app