Add like
Add dislike
Add to saved papers

Radiation Pressure Cooling as a Quantum Dynamical Process.

One of the most fundamental problems in optomechanical cooling is how small the thermal phonon number of a mechanical oscillator can be achieved under the radiation pressure of a proper cavity field. Different from previous theoretical predictions, which were based on an optomechanical system's time-independent steady states, we treat such cooling as a dynamical process of driving the mechanical oscillator from its initial thermal state, due to its thermal equilibrium with the environment, to a stabilized quantum state of higher purity. We find that the stabilized thermal phonon number left in the end actually depends on how fast the cooling process could be. The cooling speed is decided by an effective optomechanical coupling intensity, which constitutes an essential parameter for cooling, in addition to the sideband resolution parameter that has been considered in other theoretical studies. The limiting thermal phonon number that any cooling process cannot surpass exhibits a discontinuous jump across a certain value of the parameter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app