Add like
Add dislike
Add to saved papers

Semisuper Efimov Effect of Two-Dimensional Bosons at a Three-Body Resonance.

Wave-particle duality in quantum mechanics allows for a halo bound state whose spatial extension far exceeds a range of the interaction potential. What is even more striking is that such quantum halos can be arbitrarily large on special occasions. The two examples known so far are the Efimov effect and the super Efimov effect, which predict that spatial extensions of higher excited states grow exponentially and double exponentially, respectively. Here, we establish yet another new class of arbitrarily large quantum halos formed by spinless bosons with short-range interactions in two dimensions. When the two-body interaction is absent but the three-body interaction is resonant, four bosons exhibit an infinite tower of bound states whose spatial extensions scale as R_{n}∼e^{(πn)^{2}/27} for a large n. The emergent scaling law is universal and is termed a semisuper Efimov effect, which together with the Efimov and super Efimov effects constitutes a trio of few-body universality classes allowing for arbitrarily large quantum halos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app