Add like
Add dislike
Add to saved papers

Feeding behaviour of generalist pests on Brassica juncea: implication for manipulation of glucosinolate biosynthesis pathway for enhanced resistance.

Differential accumulation of plant defence metabolites has been suggested to have important ecological consequence in the context of plant-insect interactions. Feeding of generalist pests on Brassica juncea showed a distinct pattern with selective exclusion of leaf margins which are high in glucosinolates. Molecular basis of this differential accumulation of glucosinolates could be explained based on differential expression profile of BjuMYB28 homologues, the major biosynthetic regulators of aliphatic glucosinolates, as evident from quantitative real-time PCR and promoter:GUS fusion studies in allotetraploid B. juncea. Constitutive overexpression of selected BjuMYB28 homologues enhanced accumulation of aliphatic glucosinolates in B. juncea. Performance of two generalist pests, Helicoverpa armigera and Spodoptera litura larvae, on transgenic B. juncea plants were poor compared to wild-type plants in a no-choice experiment. Correlation coefficient analysis suggested that weight gain of H. armigera larvae was negatively correlated with gluconapin (GNA) and glucobrassicanapin (GBN), whereas that of S. litura larvae was negatively correlated with GNA, GBN and sinigrin (SIN). Our study explains the significance and possible molecular basis of differential distribution of glucosinolates in B. juncea leaves and shows the potential of overexpressing BjuMYB28 for enhanced resistance of Brassica crops against the tested generalist pests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app