Add like
Add dislike
Add to saved papers

Understanding the remarkable luminescence enhancement via SiO 2 coating on TiO 2 :Eu 3+ nanofibers.

TiO2 :Eu3+ nanofibers diameters can be tuned by changing the mixed solvent ratio are synthesized via the electrospinning technique. Concentration quenching phenomena and the relationship of the PL intensity ratio I(5 D0 -7 F2 )/I(5 D0 -7 F1 ) with the Eu doping concentration are discussed. Notably, the luminescence intensity is enhanced by about 7.8 fold by coating SiO2 gel layer on the TiO2 :Eu3+ nanofibers, which is successfully performed via a sol-gel process followed by calcination. Furthermore, these fibers are characterized systematically via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectroscopy. Additionally, their Judd-Ofelt and spectral parameters are calculated to investigate their local structures. The relatively low Ω2 value of the coated samples reveals a decrease in covalency in the Eu-O bonds and an increase in the symmetric nature of Eu3+ , which indicate that the perturbation effect of the crystal field in the solid system is larger than that of the uncoated samples. FT-IR analysis indicates the formation of Ti-O-Si bonds, which provide the ligand field in the interface between the TiO2 :Eu3+ nanofibers and SiO2 layer and can repair the surface unsaturated bonds. This reduces the selection rules for radiative transitions, thereby the state of the Eu3+ ions is converted from dormant to activated. Moreover, the silica coating stabilizes the surface of the TiO2 :Eu3+ nanofibers and eliminates the surface defects. Finally, a detailed mechanism is proposed to explain the luminescence enhancement behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app