Add like
Add dislike
Add to saved papers

Dosimetric characteristic of physical wedge versus enhanced dynamic wedge based on Monte Carlo simulations.

AIM OF STUDY: Physical wedges (PWs) are widely used in radiotherapy to obtain tilted isodose curves, but they alter beam quality. Dynamic wedges (DWs) using moving collimator overcome this problem, but measuring their beam data is not simple. The main aim of this study is to obtain all dosimetric parameters of DWs produced by Varian 2100CD with Monte Carlo simulation and compare them to those from PWs.

SUBJECTS AND METHODS: To simulate 6 MV photon beams equipped with PW and DW, BEAMnrc code was used. All dosimetric data were obtained with EDR2 films and two-dimensional diode array detector.

RESULTS: Good agreement between simulated and measured dosimetric data for PW and DW fields was obtained. Our results showed that percentage depth dose and beam profiles at nonwedged direction for DWs are the same as open fields and can be used to each other.

CONCLUSION: From Monte Carlo simulations, it can be concluded that DWs in spite of PW do not have effect on beam quality and are good options for treatment planning system which cannot consider hardening effect produced by PWs. Furthermore, BEAMnrc is a powerful code to acquire all date required by DWs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app