Journal Article
Review
Add like
Add dislike
Add to saved papers

Drug-induced Physeal Abnormalities in Preclinical Toxicity Studies.

Most toxic physeal changes are characterized microscopically by altered chondrocyte development, proliferation, or maturation in the growth plate and eventually result in disordered appositional bone growth. Many therapeutic drugs directly or indirectly target proteins involved in chondrocytic differentiation and maturation pathways, so toxic physeal injury has become increasingly common in preclinical toxicologic pathology. While physeal dysplasia has been associated with several different drug classes including bisphosphonates, vascular endothelial growth factor receptor inhibitors, fibroblast growth factor receptor inhibitors, transforming growth factor beta receptor inhibitors, and vascular targeting agents, physeal changes often share similar morphologic features including thickening and disorganization of the hypertrophic layer, increased numbers of hypertrophic chondrocytes, altered mineralization of endochondral ossification, and/or increased thickness of subphyseal bone. Knowledge of genetic and nutritional diseases affecting bone growth has been important in helping to determine which specific target drugs may be affecting that could result in toxic physeal lesions. A pathophysiologic mechanism for most physeal toxicants has been determined in detail using a variety of investigative techniques. However, due to the signaling cross talk and the tight regulation required for chondrocyte maturation in the physis, several growth factor pathways are likely to be affected simultaneously with pharmacologic disruption of physeal homeostasis and inhibition of one factor necessary for chondrocyte function often affects others.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app