Journal Article
Review
Add like
Add dislike
Add to saved papers

Fine-tuning PERK signaling for neuroprotection.

Protein translation and folding are tightly controlled processes in all cells, by proteostasis, an important component of which is the unfolded protein response (UPR). During periods of endoplasmic reticulum stress because of protein misfolding, the UPR activates a coordinated response in which the PERK branch activation restricts translation, while a variety of genes involved with protein folding, degradation, chaperone expression and stress responses are induced through signaling of the other branches. Chronic overactivation of the UPR, particularly the PERK branch, is observed in the brains of patients in a number of protein misfolding neurodegenerative diseases, including Alzheimer's, and Parkinson's diseases and the tauopathies. Recently, numerous genetic and pharmacological studies in mice have demonstrated the effectiveness of inhibiting the UPR for eliciting therapeutic benefit and boosting memory. In particular, fine-tuning the level of PERK inhibition to provide neuroprotection without adverse side effects has emerged as a safe, effective approach. This includes the recent discovery of licensed drugs that can now be repurposed in clinical trials for new human treatments for dementia. This review provides an overview of the links between UPR overactivation and neurodegeneration in protein misfolding disorders. It discusses recent therapeutic approaches targeting this pathway, with a focus on treatments that fine-tune PERK signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app