Add like
Add dislike
Add to saved papers

A QM/MM study of the catalytic mechanism of SAM methyltransferase RlmN from Escherichia coli.

Proteins 2017 November
RlmN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the C2 methylation of adenosine 2503 (A2503) in 23S rRNA and adenosine 37 (A37) in several Escherichia coli transfer RNAs (tRNA). The catalytic reaction of RlmN is distinctly different from that of typical SAM-dependent methyltransferases that employs an SN 2 mechanism, but follows a ping-pong mechanism which involves the intermediate methylation of a conserved cysteine residue. Recently, the x-ray structure of a key intermediate in the RlmN reaction has been reported, allowing us to perform combined quantum mechanics and molecular mechanics (QM/MM) calculations to delineate the reaction details of RlmN at atomic level. Starting from the Cross-Linked RlmN C118A-tRNA complex, the possible mechanisms for both the formation and the resolution of the cross-linked species (IM2) have been illuminated. On the basis of our calculations, IM2 is formed by the attack of the C355-based methylene radical on the sp(2) -hybridized C2 of the adenosine ring, corresponding to energy barrier of 14.4 kcal/mol, and the resolution of IM2 is confirmed to follow a radical fragmentation mechanism. The cleavage of C'-S' bond of mC355-A37 cross-link is in concert with the deprotonation of C2 by C118 residue, which is the rate-limiting step with an energy barrier of 17.4 kcal/mol. Moreover, the cleavage of C'-S' bond of IM2 can occur independently, that is, it does not require the loss of an electron of IM2 and the formation of disulfide bond between C355 and C118 as precondition. These findings would deepen the understanding of the catalysis of RlmN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app