Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A catalytic fluoride-rebound mechanism for C(sp 3 )-CF 3 bond formation.

Science 2017 June 24
The biological properties of trifluoromethyl compounds have led to their ubiquity in pharmaceuticals, yet their chemical properties have made their preparation a substantial challenge, necessitating innovative chemical solutions. We report the serendipitous discovery of a borane-catalyzed formal C(sp3 )-CF3 reductive elimination from Au(III) that accesses these compounds by a distinct mechanism proceeding via fluoride abstraction, migratory insertion, and C-F reductive elimination to achieve a net C-C bond construction. The parent bis(trifluoromethyl)Au(III) complexes tolerate a surprising breadth of synthetic protocols, enabling the synthesis of complex organic derivatives without cleavage of the Au-C bond. This feature, combined with the "fluoride-rebound" mechanism, was translated into a protocol for the synthesis of 18 F-radiolabeled aliphatic CF3 -containing compounds, enabling the preparation of potential tracers for use in positron emission tomography.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app