JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mutations on FtsZ lateral helix H3 that disrupt cell viability hamper reorganization of polymers on lipid surfaces.

FtsZ filaments localize at the middle of the bacterial cell and participate in the formation of a contractile ring responsible for cell division. Previous studies demonstrated that the highly conserved negative charge of glutamate 83 and the positive charge of arginine 85 located in the lateral helix H3 bend of Escherichia coli FtsZ are required for in vivo cell division. In order to understand how these lateral mutations impair the formation of a contractile ring,we extend previous in vitro characterization of these mutants in solution to study their behavior on lipid modified surfaces. We study their interaction with ZipAand look at their reorganization on the surface. We found that the dynamic bundling capacity of the mutant proteins is deficient, and this impairment increases the more the composition and spatial arrangement of the reconstituted system resembles the situation inside the cell: mutant proteins completely fail to reorganize to form higher order aggregates when bound to an E.coli lipid surface through oriented ZipA.We conclude that these surface lateral point mutations affect the dynamic reorganization of FtsZ filaments into bundles on the cell membrane, suggesting that this event is relevant for generating force and completing bacterial division.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app