Add like
Add dislike
Add to saved papers

Novel Stokesian Metrics that Quantify Collision Efficiency, Floc Strength, and Discrete Settling Behavior.

  Novel parameters were developed to predict the effluent quality and settling behavior in clarifiers that cannot conventionally be achieved using either the conventional flux theory or overflow rates. Simple batch experiments based on the critical settling velocity (CSV) selection were used as the basis for the development of three novel parameters: intrinsic settling classes (ISC), threshold of flocculation/flocculation limitation (TOF/α), and floc strength. ISC was proven to accurately (±2%) determine the granule fraction and discrete particle distribution. TOF quantified the minimum solids concentration needed to form large flocs and was directly linked to collision efficiency. In hybrid systems, an exponential fitting on a CSV matrix was proposed to quantify the collision efficiency of flocs (α). Shear studies were conducted to quantify floc strength. The methods were applied to a wide spectrum of sludge types to show the broad applicability and sensitivity of the novel methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app