JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Improved boundary segmentation of skin lesions in high-frequency 3D ultrasound.

In this article, we propose a segmentation algorithm for skin lesions in 3D high-frequency ultrasound images. The segmentation is done on melanoma and Basal-cell carcinoma tumors, the most common skin cancer types, and could be used for diagnosis and surgical excision planning in a clinical context. Compared with previously proposed algorithms, which tend to underestimate the size of the lesion, we propose two new boundary terms which provide significant improvements of the accuracy. The first is a probabilistic boundary expansion (PBE) term designed to broaden the segmented area at the boundaries, which uses the feature asymmetry criterion. The second is a curvature dependent regularization (CDR), which aims at overcoming the tendency of standard regularization to shrink segmented areas. On a clinical dataset of 12 patients annotated by a dermatologist, the proposed algorithm has a comparable Dice index but increases the sensitivity by 26%. The proposed algorithm improves the sensitivity for all lesions, and the obtained sensitivity is close to that of the intra-observer variability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app