COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparative analysis of polyspecificity of the endogenous tRNA synthetase of different expression host towards photocrosslinking amino acids using an in silico approach.

Photo-induced covalent crosslinking has emerged as the powerful strategy for analyzing and characterizing the protein-protein interaction and mapping protein 3D conformations. In the last decades, a number of photocrosslinking amino acids have been reported but only a few have been efficiently utilized for photocrosslinking purposes. Recently, incorporation of diazirine containing photoactivatable analogs such as photo-methionine, photo-leucine, photo-isoleucine and photo-lysine into target proteins were accomplished in live cells (Human A549cells, HEK 293) by depleting corresponding natural amino acid and supplementing these analogs in the medium. Likewise, incorporation of photo-methionine and photo-leucine is also reported in E. coli. Incorporation of these unnatural amino acids were demonstrated only in a limited number species, thereby conventional methods have been utilized for the protein-protein interaction study in other species. With this in mind, we studied in silico analysis of polyspecificity of four endogenous tRNA synthetases (LeuRS, IleRS, MetRS, and LysRS) from six different species such as Escherichia coli, Pseudomonas fluorescens, Corynebacterium glutamicum, Saccharomyces cerevisiae, Aspergillus oryzae and Homo sapiens towards its photocrosslinking amino acids. In addition, here we describe the active site similarity of different protein bio-factories. Based on the active site similarity and similar binding mode, we predicted that the endogenous tRNA synthetases of all the species are reactive to corresponding photoactivatable analogs. This is the first in silico study to demonstrate that the photocrosslinking unnatural amino acids are recognized by the endogenous tRNA synthetases of different protein expression biofactories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app