JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Locking-In Optimal Nanoscale Structure Induced by Naphthalenediimide-Based Polymeric Additive Enables Efficient and Stable Inverted Polymer Solar Cells.

ACS Nano 2017 July 26
Operational stability and high performance are the most critical issues that must be addressed in order to propel and advance the current polymer solar cell (PSC) technology to the next level, such as manufacturing and mass production. Herein, we report a high power conversion efficiency (PCE) of 11.2%, together with an excellent device stability in PTB7-Th:PC71 BM-based PSCs in the inverted structure by introducing the n-type P(NDI2OD-T2) macromolecular additive (>75% PCE retention at high temperature up to 120 °C, >97% PCE retention after 6 months in inert conditions, >93% PCE retention after 2 months in air with encapsulation, and >80% PCE retention after 140 h in air without encapsulation). The PCE is the highest value ever reported in the single-junction systems based on the PTB7 family and is also comparable to the previously reported highest PCE of inverted PSCs. These promising results are attributed to the efficient optimization and stabilization of the blend film morphology in the photoactive layer, achieved using the P(NDI2OD-T2) additive. From the perspective of manufacturing, our studies demonstrate a promising pathway for fabricating low-cost PSCs with high efficiency as well as long-term stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app