COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Stimulant Treatment Trajectories Are Associated With Neural Reward Processing in Attention-Deficit/Hyperactivity Disorder.

OBJECTIVE: The past decades have seen a surge in stimulant prescriptions for the treatment of attention-deficit/hyperactivity disorder (ADHD). Stimulants acutely alleviate symptoms and cognitive deficits associated with ADHD by modulating striatal dopamine neurotransmission and induce therapeutic changes in brain activation patterns. Long-term functional changes after treatment are unknown, as long-term studies are scarce and have focused on brain structure. In this observational study (2009-2012), we investigated associations between lifetime stimulant treatment history and neural activity during reward processing.

METHODS: Participants fulfilling DSM-5 criteria for ADHD (N = 269) were classified according to stimulant treatment trajectory. Of those, 124 performed a monetary incentive delay task during magnetic resonance imaging, all in their nonmedicated state (nEARLY&INTENSE = 51; nLATE&MODERATE = 49; nEARLY&MODERATE = 9; nNAIVE = 15; mean age = 17.4 years; range, 10-26 years). Whole-brain analyses were performed with additional focus on the striatum, concentrating on the 2 largest treatment groups.

RESULTS: Compared to the late-and-moderate treatment group, the early-and-intense treatment group showed more activation in the supplementary motor area and dorsal anterior cingulate cortex (SMA/dACC) during reward outcome (cluster size = 8,696 mm³; PCLUSTER < .001). SMA/dACC activation of the control group fell in between the 2 treatment groups. Treatment history was not associated with striatal activation during reward processing.

CONCLUSIONS: Our findings are compatible with previous reports of acute increases of SMA/dACC activity in individuals with ADHD after stimulant administration. Higher SMA/dACC activity may indicate that patients with a history of intensive stimulant treatment, but currently off medication, recruit brain regions for cognitive control and/or decision-making upon being rewarded. No striatal or structural changes were found.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app