JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chemical Modification of n-Type-Material Naphthalene Diimide on ITO for Efficient and Stable Inverted Polymer Solar Cells.

To provide orthogonal solvent processable surface modification and improve the device stability of bulk-heterojunction polymer solar cells (PSCs), n-type semiconducting material naphthalene diimide (NDI) was chemically introduced onto the ITO surface as a cathode interlayer (CIL) using 3-bromopropyltrimethoxysilane (BrTMS) as a coupling agent. After modification, the work function of ITO can be decreased from 4.70 to 4.23 eV. The modified ITO cathode was applied in inverted PSCs based on PTB7-Th:PC71 BM. With the CIL modification, a champion power conversion efficiency (PCE) of 5.87% was achieved, showing a dramatic improvement compared to that of devices (PCE = 3.58%) without CIL. More importantly, with these chemical bonded interlayers, the stability of inverted PSCs was greatly enhanced. The improved PCE and stability can be attributed to the increased open-circuit voltage and the formation of robust chemical bonds in NDI-TMS films, respectively. This study demonstrated that chemical modification of ITO with n-type semiconducting materials provides an avenue for not only solving the solvent orthogonal problem but also improving the device performance in terms of the PCE and the stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app