Add like
Add dislike
Add to saved papers

Primary and Photochemically Aged Aerosol Emissions from Biomass Cookstoves: Chemical and Physical Characterization.

Secondary organic aerosol (SOA) formation during photo-oxidation of primary emissions from cookstoves used in developing countries may make important contributions to their climate and air quality impacts. We present results from laboratory experiments with a field portable oxidation flow reactor (F-OFR) to study the evolution of emissions over hours to weeks of equivalent atmospheric aging. Lab tests, using dry red oak, measured fresh and aged emissions from a 3 stone fire (TSF), a "rocket" natural draft stove (NDS), and a forced draft gasifier stove (FDGS), in order of increasing modified combustion efficiency (MCE) and decreasing particulate matter emission factors (EF). SOA production was observed for all stoves/tests; organic aerosol (OA) enhancement factor ranged from 1.2 to 3.1, decreasing with increased MCE. In primary emissions, OA mass spectral fragments associated with oxygenated species (primary biomass burning markers) increased (decreased) with MCE; fresh OA from FDGS combustion was especially oxygenated. OA oxygenation increased with further oxidation for all stove emissions, even where minimal enhancement was observed. More efficient stoves emit particles with greater net direct specific warming than TSFs, with the difference increasing with aging. Our results show that the properties and evolution of cookstove emissions are a strong function of combustion efficiency and atmospheric aging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app