Add like
Add dislike
Add to saved papers

Anti-Inflammatory Effect of Anti-TNF-α SiRNA Cationic Phosphorus Dendrimer Nanocomplexes Administered Intranasally in a Murine Acute Lung Injury Model.

Biomacromolecules 2017 August 15
Inflammation is an essential component of many lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), or acute lung injury. Our purpose was to design efficient carriers for lung delivery of small interfering RNA (siRNA) targeting tumor necrosis factor (TNF-α) in an acute lung injury model. To achieve this goal, two different types of phosphorus-based dendrimers with either pyrrolidinium or morpholinium as terminal protonated amino groups were selected for their better biocompatibility compared to other dendrimers. Dendriplexes containing pyrrolidinium surface groups demonstrated a stronger siRNA complexation, a higher cellular uptake, and enhanced in vitro silencing efficiency of TNF-α in the lipopolysaccharide (LPS)-activated mouse macrophage cell line RAW264.7, compared to morpholinium-containing dendriplexes. The better performance of the pyrrolidium dendriplexes was attributed to their higher pKa value leading to a stronger siRNA complexation and improved protection against enzymatic degradation resulting in a higher cellular uptake. The superior silencing effect of the pyrrolidinium dendriplexes, compared to noncomplexed siRNA, was confirmed in vivo in an LPS-induced murine model of short-term acute lung injury upon lung delivery via nasal administration. These data suggest that phosphorus dendriplexes have a strong potential in lung delivery of siRNA for treating inflammatory lung diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app