Add like
Add dislike
Add to saved papers

Incorporation of 'click' chemistry glycomimetics dramatically alters triple-helix stability in an adiponectin model peptide.

Adiponectin (Adpn) has been shown to be a possible therapeutic for Type II diabetes, however the production of a therapeutic version of Adpn has proved to be challenging. Biological studies have highlighted the importance of the glycosylated lysine residues for the formation of bioactive high molecular weight oligomers of Adpn. Through the use of 'click' glycopeptide mimetics, we investigated the role of glycosylated lysine and serine residues for the formation of triple helical structures of the collagenous domain of Adpn, in the context of a collagen model peptide scaffold. The physical properties of the unglycosylated lysine and serine peptides are compared with their glycosylated analogues. Our results highlight the crucial role of lysine residues for formation of the triple helical structure of Adpn, possibly due to the extension of both intra- and interstrand hydrogen bonding networks. Strikingly, we observed a significant decrease in thermal stability upon incorporation of triazole-linked analogues of glycosylated lysine residues into the adiponectin collageneous domain, indicating possible uses of 'click' glycomimetics for bioengineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app