Add like
Add dislike
Add to saved papers

Development of Therapeutic dsP21-322 for Cancer Treatment.

Small activating RNAs (saRNAs) are a class of artificially designed short duplex RNAs targeted at the promoter of a particular gene to upregulate its expression via a mechanism known as RNA activation (RNAa) and hold great promise for treating a wide variety of diseases including those undruggable by conventional therapies. The therapeutic benefits of saRNAs have been demonstrated in a number of preclinical studies carried out in different disease models including cancer. With many tumor suppressor genes (TSGs) downregulated due to either epigenetic mechanisms or haploinsufficiency resulting from deletion/mutation, cancer is an ideal disease space for saRNA therapeutics which can restore the expression of TSGs via epigenetic reprogramming. The p21(WAF1/CIP) gene is a TSG frequently downregulated in cancer and an saRNA for p21(WAF1/CIP) known as dsP21-322 has been identified to be a sequence-specific p21(WAF1/CIP) activator in a number of cancer types. In this chapter, we review preclinical development of medicinal dsP21-322 for cancer, especially prostate cancer and bladder cancer, and highlight its potential for further clinical development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app