JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Genomics of Lithium Action and Response.

Lithium is the most successful mood stabilizer treatment for bipolar disorder. However, unlike conventional drugs that are designed to interact with a specific molecular target, the actions of lithium are distributed across many biological processes and pathways. Treatment response is subject to genetic variation between individuals and similar genetic variation may dictate susceptibility to side effects. Transcriptomic, genomic, and cell-model research strategies have all been deployed in the search for the genetic factors and biological systems that mediate the interaction between genetics and the therapeutic actions of lithium. In this review, recent findings from genome-wide studies and patient cell lines will be summarized and discussed from a standpoint that genuine progress is being made to define clinically useful mechanisms of this treatment, to place it in the context of bipolar disorder pathology, and to move towards a time when the prescription of lithium is targeted to those individuals who will derive the greatest benefit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app