Add like
Add dislike
Add to saved papers

Accumulation properties of polychlorinated biphenyl congeners in Yusho patients and prediction of their cytochrome P450-dependent metabolism by in silico analysis.

In what has become known as the Yusho incident, thousands of people in western Japan were poisoned by the accidental ingestion of rice bran oil contaminated with polychlorinated biphenyls (PCBs) and various dioxins and dioxin-like compounds. In this study, we investigated the accumulation patterns of 69 PCB congeners in the blood of Yusho patients in comparison with those of non-exposed controls. The blood samples were collected at medical check-ups in 2004 and 2005. To compare the patterns of PCB congeners, we calculated the concentration ratio of each congener relative to the 2,2',4,4',5,5'-hexaCB (CB153) concentration. The concentration ratios of tetra- and penta-chlorinated congeners in the blood of Yusho patients were significantly lower than those of controls. To examine the cytochrome P450 (CYP)-dependent metabolic potential of the 2,3',4,4'5-pentaCB (CB118), CB153, and 2,3,3',4,4'5-hexaCB (CB156) congeners, we conducted PCB-CYP (CYP1A1, CYP1A2, CYP2A6, and CYP2B6) docking simulation by in silico analysis. The docking models showed that human CYP1A1, CYP2A6, and CYP2B6 isozymes have the potential to metabolize CB118 and CB153. On the other hand, it was inferred that CB156 is difficult to be metabolized by these four CYP isozymes. These results indicate that CYP1 and CYP2 isozymes may be involved in the characteristic accumulation patterns of PCB congeners in the blood of Yusho patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app