Add like
Add dislike
Add to saved papers

Vapour-Induced Liquid Crystallinity and Self-Recovery Mechanochromism of Helical Block Copolymer.

Scientific Reports 2017 June 22
New molecular design of conjugated polymer that possess high sensitivity to vapour and self-recovering property against pressure is proposed. We synthesised a rod-rod diblock copolymer, poly(3-((3S)-3,7-dimethyl-octyl)-thiophene)-block-poly(4-octyl phenylisocyanide) (PTh- b -PPI), composed of a π-conjugated polymer and a rod-type helical coiled polymer. Introduction of PPI block in the block copolymer architecture enabled PTh- b -PPI film to exhibit solid-to-liquid crystal phase transition by exposure to chloroform vapour, accompanied with colour change (purple-to-yellow), which is the first report on a new phenomenon of "vapour-induced liquid crystallinity". In addition, PTh- b -PPI film showed colour change (purple-to-vermillion) during mechanical shearing, and spontaneously recovered under ambient conditions. We concluded that rod-type helical coiled polymer PPI block performs crucial roles as intrinsically vapour-induced liquid crystallinity and self-reassembling property in the architecture of PTh- b -PPI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app