Add like
Add dislike
Add to saved papers

Synapse-specific effects of IL-1β on long-term potentiation in the mouse hippocampus.

Interleukin-1β (IL-1β) is a key molecule in the inflammatory responses elicited during infection and injury. It exerts local effects on synaptic plasticity by binding to IL-1 receptors that are expressed at high levels in the hippocampus. We examined the effects of IL-1β on synaptic plasticity in different hippocampal regions in acute mouse brain slices by measuring long-term potentiation (LTP). IL-1β (1 ng/mL) was applied for 30 min before LTP was induced with high-frequency stimulation (HFS). LTP was significantly impaired by either IL-1β application to the Schaffer collateral-CA1 synapses or the associational/commissural (A/C) fiber-CA3 synapses, which are both dependent on N-methyl-D-aspartate (NMDA) receptor activation. However, mossy fiber-CA3 LTP, which is expressed presynaptically in an NMDA-independent manner, was not impaired by IL-1β. Our results demonstrate that IL-1β exerts variable effects on LTP at different kinds of synapses, indicating that IL-1β has synapse-specific effects on hippocampal synaptic plasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app