Add like
Add dislike
Add to saved papers

Facile Synthesis and Chain-Length Dependence of the Optical and Structural Properties of Diketopyrrolopyrrole-Based Oligomers.

Here, we report the synthesis, optical properties, and solid-state packing of monodisperse oligomers of diketopyrrolopyrrole (DPP) up to five repeating units. The optical properties of DPP oligomers in solution and the solid state were investigated by a combination of steady-state and transient spectroscopy. Transient absorption spectroscopy and time-correlated single photon counting (TCSPC) measurements show that the fluorescence lifetime decreases with an increase in the oligomer size from monomer to trimer, thereby reaching saturation for pentameric DPP oligomers. The solid-state packing and crystallinity were probed by using advanced techniques, which included grazing incidence small-angle X-ray scattering (GISAXS) and X-ray diffraction (XRD) to elucidate the structure-property trend. Collectively, our chain-length dependent studies establish the fundamental correlation between the structure and property and provide a comprehensive understanding of the solid-state properties in DPP-DPP based conjugated systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app