Add like
Add dislike
Add to saved papers

Invariant wide bandgaps in honeycomb monolayer and single-walled nanotubes of IIB-VI semiconductors.

Nanotechnology 2017 September 2
The search for low-dimensional materials with unique electronic properties is important for the development of electronic devices in the nanoscale. Through systematic first-principles calculations, we found that the band gaps of the two-dimensional honeycomb monolayers (HMs) and one-dimensional single-walled nanotubes (SWNTs) of IIB-VI semiconductors (ZnO, CdO, ZnS and CdS) are nearly chirality-independent and weakly diameter-dependent. Based on analysis of the electronic structures, it was found that the conduction band minimum is contributed to by the spherically symmetric s orbitals of cations and the valence band maximum is dominated by the in-plane [Formula: see text] and [Formula: see text] hybridizations. These electronic states are robust against radius curvature, resulting in the invariant feature of the band gaps for the structures changing from HM to SWNTs. The band gaps of these materials range from 2.3 to 4.7 eV, which is of potential application in electronic devices and optoelectronic devices. Our studies show that searching for and designing specific electronic structures can facilitate the process of exploring novel nanomaterials for future applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app