JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lithium Ion Coupled Electron-Transfer Rates in Superconcentrated Electrolytes: Exploring the Bottlenecks for Fast Charge-Transfer Rates with LiMn 2 O 4 Cathode Materials.

The charge-transfer kinetics of lithium ion intercalation into Lix Mn2 O4 cathode materials was examined in dilute and concentrated aqueous and carbonate LiTFSI solutions using electrochemical methods. Distinctive trends in ion intercalation rates were observed between water-based and ethylene carbonate/diethyl carbonate solutions. The influence of the solution concentration on the rate of lithium ion transfer in aqueous media can be tentatively attributed to the process associated with Mn dissolution, whereas in carbonate solutions the rate is influenced by the formation of a concentration-dependent solid electrolyte interface (SEI). Some indications of SEI layer formation at electrode surfaces in carbonate solutions after cycling are detected by X-ray photoelectron spectroscopy. The general consequences related to the application of superconcentrated electrolytes for use in advanced energy storage cathodes are outlined and discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app