Add like
Add dislike
Add to saved papers

Efficient Flame-Retardant and Smoke-Suppression Properties of Mg-Al-Layered Double-Hydroxide Nanostructures on Wood Substrate.

Improving the flame retardancy of wood is an imperative yet highly challenging step in the application of wood in densely populated spaces. In this study, Mg-Al-layered double-hydroxide (LDH) coating was successfully fabricated on a wood substrate to confer flame-retardant and smoke-suppression properties. The chemical compositions and bonding states characterized by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the coating constituents of Mg-Al LDH. The coating evenly covered the sample wood surfaces and provided both mechanical enhancement and flame-retardancy effects. The limiting oxygen index of the Mg-Al LDH-coated wood increased to 39.1% from 18.9% in the untreated wood. CONE calorimetry testing revealed a 58% reduction in total smoke production and a 41% reduction in maximum smoke production ratio in the Mg-Al LDH-coated wood compared to the untreated wood; the peak heat release rate and total heat release were also reduced by 49% and 40%, respectively. The Mg-Al LDH coating is essentially hydrophilic, but simple surface modification by fluoroalkyl silane could make it superhydrophobic, with a water contact angle of 152° and a sliding angle of 8.6°. The results of this study altogether suggest that Mg-Al LDH coating is a feasible and highly effective approach to nanoconstructing wood materials with favorable flame-retardant and smoke-suppression properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app