JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Isotope-Controlled Selectivity by Quantum Tunneling: Hydrogen Migration versus Ring Expansion in Cyclopropylmethylcarbenes.

Using the tunneling-controlled reactivity of cyclopropylmethylcarbene, we demonstrate the viability of isotope-controlled selectivity (ICS), a novel control element of chemical reactivity where a molecular system with two conceivable products of tunneling exclusively produces one or the other, depending only on isotopic composition. Our multidimensional small-curvature tunneling (SCT) computations indicate that, under cryogenic conditions, 1-methoxycyclopropylmethylcarbene shows rapid H-migration to 1-methoxy-1-vinylcyclopropane, whereas deuterium-substituted 1-methoxycyclopropyl-d3 -methylcarbene undergoes ring expansion to 1-d3 -methylcyclobutene. This predicted change in reactivity constitutes the first example of a kinetic isotope effect that discriminates between the formation of two products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app