Add like
Add dislike
Add to saved papers

Engineering human bone grafts with new macroporous calcium phosphate cement scaffolds.

Bone engineering opens the possibility to grow large amounts of tissue products by combining patient-specific cells with compliant biomaterials. Decellularized tissue matrices represent suitable biomaterials, but availability, long processing time, excessive cost, and concerns on pathogen transmission have led to the development of biomimetic synthetic alternatives. We recently fabricated calcium phosphate cement (CPC) scaffolds with variable macroporosity using a facile synthesis method with minimal manufacturing steps and demonstrated long-term biocompatibility in vitro. However, there is no knowledge on the potential use of these scaffolds for bone engineering and whether the porosity of the scaffolds affects osteogenic differentiation and tissue formation in vitro. In this study, we explored the bone engineering potential of CPC scaffolds with two different macroporosities using human mesenchymal progenitors derived from induced pluripotent stem cells (iPSC-MP) or isolated from bone marrow (BMSC). Biomimetic decellularized bone scaffolds were used as reference material in all experiments. The results demonstrate that, irrespective of their macroporosity, the CPC scaffolds tested in this study support attachment, viability, and growth of iPSC-MP and BMSC cells similarly to decellularized bone. Importantly, the tested materials sustained differentiation of the cells as evidenced by increased expression of osteogenic markers and formation of a mineralized tissue. In conclusion, the results of this study suggest that the CPC scaffolds fabricated using our method are suitable to engineer bone grafts from different cell sources and could lead to the development of safe and more affordable tissue grafts for reconstructive dentistry and orthopaedics and in vitro models for basic and applied research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app